Spin Kostka polynomials and vertex operators
نویسندگان
چکیده
منابع مشابه
Hall-littlewood Vertex Operators and Generalized Kostka Polynomials Mark Shimozono and Mike Zabrocki
Kostka-Folkes polynomials may be considered as coefficients of the formal power series representing the character of certain graded GL(n)-modules. These GL(n)-modules are defined by twisting the coordinate ring of the nullcone by a suitable line bundle [1] and the definition may be generalized by twisting the coordinate ring of any nilpotent conjugacy closure in gl(n) by a suitable vector bundl...
متن کاملTwisted vertex operators and Bernoulli polynomials
Using general principles in the theory of vertex operator algebras and their twisted modules, we obtain a bosonic, twisted construction of a certain central extension of a Lie algebra of differential operators on the circle, for an arbitrary twisting automorphism. The construction involves the Bernoulli polynomials in a fundamental way. We develop new identities and principles in the theory of ...
متن کاملPaths and Kostka–macdonald Polynomials
We give several equivalent combinatorial descriptions of the space of states for the box-ball systems, and connect certain partition functions for these models with the q-weight multiplicities of the tensor product of the fundamental representations of the Lie algebra gl(n). As an application, we give an elementary proof of the special case t = 1 of the Haglund–Haiman–Loehr formula. Also, we pr...
متن کاملUbiquity of Kostka Polynomials
We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...
متن کاملThe Bailey Lemma and Kostka Polynomials
Using the theory of Kostka polynomials, we prove an An−1 version of Bailey’s lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A n−1 and to identities for A-type branching functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2023
ISSN: ['1945-5844', '0030-8730']
DOI: https://doi.org/10.2140/pjm.2023.325.127